Charlestown Primary School

Charlestown Primary School - Calculation Policy \& Guidance

White Rose Maths are Number Sense are used as primary resources to deliver the Mathematics National Curriculum (2014) at Charlestown Primary School. The content of the National Curriculum is broken down into 'Declarative, Procedural and Conditional' knowledge to ensure children are secure in their understanding before moving on to the next phase e.g. 'not running before they can walk'. Children need to have a secure understanding of age-appropriate declarative (number) facts before they can progress to using these facts to support their procedural understanding (methods) and later using and applying these skills to demonstrate their conditional knowledge when problem solving.
The planning and teaching of the curriculum using White Rose, whilst considering the pupils' learning journey and application of Mathematical knowledge, skills and understanding (declarative, procedural, conditional) is underpinned and supported by our Calculation Policy.When supporting pupils with the four operations (calculations) these are the methods we use, starting with concrete resources / manipulatives and then progressing into pictorial representations and later, abstract calculations. This interchangeable approach from concrete to pictorial and / or abstract, ensures pupil are secure in their procedural understanding as consistent methods are used throughout the school from EYFS to Year 6.

Charlestown
Primary School

Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number your head and count on the smaller number to fin your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?

Use pictures or a number line. Regroup or partition the smaller number to make 10.

Column method- no regrouping

Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.

Start with the bigger number and use the smaller number to make 10.

$4+7+6=17$

Put 4 and 6 together to make 10. Add on 7.

$24+15=$
Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.

\odot	0
$0 \odot 0 \odot$	0000
0	00000

$7+4=11$
If I am at seven, how many more do I need to make 10. How many more do I add on no

$$
\begin{aligned}
\frac{4+7+6}{10} & =10+7 \\
& =17
\end{aligned}
$$

Combine the two numbers that make 10 and then add on the remainder.

Calculations

$21+42=$

21

$+\underline{42}$

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Charlestown
Primary School

Charlestown
Column \quad Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges.

Make the larger number with the place value counters

Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.

Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.

```
836-254=582
    8*0
-200 50 4
500 80 2
```

Children can start their formal written method by partitioning the number into clear place value columns.

When confident, children can find their own way to record the exchange/regrouping.

Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.
$728-582=146$

4	8	2

Moving forward the children use a more compact method.

Now I can subtract my ones.

Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

This will lead to an understanding of subtracting any number including decimals.

Objective and
Strategies
Doubling

Charlestown Primary School

Repeated addition	$3+3+3$ objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Show the link with arrays to first introduce the grid method.

4 rows
of 104
rows
of 3
Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Then you have your answer.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$$
210+35=245
$$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

	10			8
10	100			80
3	30			24
X	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

Charlestown Primary School

Children can continue to be supported by place value counters at the stage of multiplication.

It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.

Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.

Start with long
multiplication, reminding the children about lining up their numbers clearly in columns.

If it helps, children can write out what they are solving next to their answer.

This moves to the more compact method.
$2 \quad 31$
1342
x 18
13420
10736
24156

Charlestown
Objective and
Strategies
Sharing
objects into
groups

Draw an array and use lines to split the array into groups to make multiplication and division sentences.

Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.

Draw dots and group them to divide an amount and clearly show a remainder.

Find the inverse of multiplication and division sentences by creating four linking number sentences.
$7 \times 4=28$
$4 \times 7=28$
$28 \div 7=4$
$28 \div 4=7$

Complete written divisions and show the remainder using r .
$29 \div 8=3$ REMAINDER 5
$\uparrow \uparrow \uparrow$
dividend divisor quotient remainder

	Tens 3	Units
2		

Use place value counters to divide using the bus stop method alongside

Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.

We exchange this ten for ten ones and then share the ones equally among the groups.

We look how much in 1 group so the answer is 14 .

Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.

Encourage them to move towards counting in multiples to divide more efficiently.

Begin with divisions that divide equally with no remainder.

Move onto divisions with a remainder.

$5 \quad 4 \quad 3 \quad 2$
Finally move into decimal places to divide the total accurately.

$2544 \div 12$
How many groups of 12 thousands do we have? None

Exchange 2 thousand for 20 hundreds.

$$
1 2 \longdiv { \frac { 0 } { 2 5 4 4 } }
$$

How many groups of 12 are in 25 hundreds? 2 groups. Circle them.
We have grouped 24 hundreds so can take them off and we are left with one.

Exchange the one hundred for ten tens so now we have 14 tens. How many groups of 12 are in 14? 1 remainder 2

Exchange the two tens for twenty ones so now we have 24 ones. How many groups of

12

Instead of using physical counters, students can draw the counters and circle the groups on a whiteboard or in their books.

Use this method to explain what is happening and as soon as they have understood what move on to the abstract method as this can be a time consuming process.

